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I. INTRODUCTION

In the study of the stability of a liquid-filled projectile, it is
necessary to determine the flow field of the liquid during the time when
rotational motion is imparted to it by the container. This is called the
spin-up problem. Typically, the fluid is contained in a right-circular
cylinder. In the present discussion, the fluid fills the cylinder. The
coordinate system and some notation are shown in Figure 1.

The fluid spins up from rest until it rotates like a solid, except for
the flow imparted by the angular motion of the projectile which is neglected
in the spin-up problem. Spin-up from rest is an inherently nonlinear problem,
b't the physics is well understood. The basic work was done by Wedemeyer. 1

This and other spin-up problems are discussed by Greenspan 2 and Benton and
Clark.- More recently, the spin-up problem has been solved, without the
approximations 0f the Wedemeyer model, using finite difference approximations
to the Navier-Stokes equations.4

Wedemeyer's model yielded a nonlinear partial differential equation of
the dirfusion type for the azimuthal velocity,* V, as a function of time and
"radial coordinate but not axial coordinate. For large Reynolds number, Re,
the diffusion terms in this equation can be neglected for some purposes and
the solution for V is elementary; Wedemeyer neglected them in his approximate
"analysis. For other important applications, the diffusion terms must be
included giving a second-order, nonlinear, parabolic partial differential
equation. The finite difference solutions of this equation and various
"aspects of the theory, were presented by Sedney and Gerber.t

Two of the main app, ications of spin-up theory are to the study of the free
oscillations, the eigenvalue problem, and forced oscillations arising from the

*Definitions of symbols are given in List of Symbols section.

14 1. E. H. Wedemeyer, "The Unsteady Flcao Within a Spinning Cylinder," U.S. Army
"*i Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, BRL

Report No. 1225, October 1963 (AD 431846). Also Journal of Fluid
Mechanics, Vol. 20, Part 3, 1964, pp. 383-399.

2. H. 1. Greenspan, The Theory of Rotating Fluids, Cambridge University

Press, London and New York, 1968.

3. E. R. Benton and A. Clark, Jr., "Spin-Up," article in Annual Review of

Fluid Mechanics, Vol. 6, Annual Reviews, Inc., Palo Alto, California,
" ~1974.

"4. C. W. Kitcheis, Jr., "Navier-Stox Solutions for Spin-Up From Rest in a
Cylindrical Container," U.S. Army -allistic Research Laboratory, Aberdeen
Proving Ground, Maryland, DRL Technical Report ARBRL-TR-02193, September
1979 (AD A077115).

5. R. Sedney and N. Gerber, "Viscous Effects in the Wedemeyer Model of Spin-
Up From Rest," U.S. Army Ballistic Research Laboratory, Aher 'een Proving
Ground, Maryland, BRL Technical Report ARBRLTR-02493, June 1983

" (AD A129506).
7

'" I ~PRE:VIOUS PAGE •
•.:a I IS BLANK

k!t• + .,, ., -., .. .• , ... .u :-...-., . .- .. :. -.----- : . .- ..... . . ., .. . . -.. . -- ..-- . . _.... -:-:-:::: .



angular motion of the projectile, the momlmnt problem. The eigenvalue problem
during spin-up, i.e., determination of the frequencies and decay rates of the
waves in the rotating fluid, was considered by Sedney and Gerber. 6 This
theory was also used to study the spin decay of a liquid-filled projectile7
"after ejection from the gun.

In these applications an accurate solution of the spin-up equation is
required. In Reference 5 it was pointed out that one of the sources of error
in the finite difference solution was the effect of a discontinuity in the
boundary data when the rotation of the container' is imparted impulsively. The
objectives of this report are to provide the details not included ir Reference
5, extend the treatment of this discontinuity, and to give rules for its prac-
tical implementation. The Wedemeyer spin-up model, the finite difference
method, and the impulsive start assumption are discussed in detail in
Reference 5. Most of the notation here is the same as in Reference 5.

II. THE SPIN-UP EQUATION AND BOUNDARY CONDITIONS

"The cylinder, with radius a and height 2c, is filled with fluid and
"initially at rest. At time t = 0, it is given an angular velocity i abeut its
axis which remains constant; i.e., the angular velocity history is a step
function or Heaviside function. A description of the resulting flow is re-
quired. Lengths, velocities, pressure, and time are made dimensioniess by

a, as, psi a and S', respectively. In the inertial frame cylindrical coor-
dinates r, 0, z are used with velocities U, V, W in those directions, respect-
ively; the origin of z is at the center of the cylinder. Dimensionless time
is t. Derivatives are indicated by subscripts.

The solution to the spin-up problem is governed by two nondimensional
parameters: the aspect ratio c/a and the Reynolds number

Re = • a 2 /v

where v is the kinematic viscosity of the liquid. During spii-up boundary
layers, called Ekman layers, exist on the endwalls. For Re < 105 , approxi-
mately, the Ekman layers are laminar, whereas they are turbulent for larger
Re; obviously, this criterion is by no means precise. The spin-up equation
differs for laminar and turbulent Ekman layers.

6. R. Sedney and N. Gerber, "Oscillations of a Liquid in a Rotating Cylin-
der: Part II. Spin-Up," U.S. Army Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland, BRL Technical Report ARBRL-TR-02489, May 1983
(AD A129094).

7. C. W. Kitchens, Jr., N. Gerber, and R. Sedney, "Spin Decay of Liquid-
Filled Projectiles," Journal of Spacecraft and Rockets, Vol. 15, No. 6,
Nov-Dec 1978, pp. 349--M4. see aLso BRL Report No. 1996, July 1977
(AD A043275.'

8
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It is convenient to have a measure of the time scale for the spin-up
process and this depends on the state of the Ekman layers. If the Ekman
layers are laminar, the characteristic time, in seconds, for spin-up is

s = 12 c/a) Rel/ 2 /s (sec)

or in nondlmensionalized form

ts = (2 c/a) ReI/ 2.

* If the Ekman layers are turmulent, the characteristic time for spin-up is

=st = (28.6 c's) Rel/ 5 /0 (sec)

or in nondimensionalized form

tst = (28.6 c/a) Re/5

These results are derivable from hr 3ar spin-up theory or the Wedemeyer solu-
tion without diffusion. The tirmi scales do not give the time for sensible
conclusion of the spin-up process; they are a measure of the time for a change
of 1/e from the initial state,

The conditions for which tOe Wedemeyer spin-up model' is valid can be
presented in terms of the time sLales involved. These are the time for one
rotation of the container, the spin-up time and the time scale for diffusion
across the radius of the cylinder. The mudel was derived on the basis of an
impulsively started cylindrical cont,-iner, a condition which can only be
approximated in practice. Addiional time scales must be introduced to assess
the approximation to an ini, lsive start; these are discussed in Referei =e 5.
The acceleration of a projectile in a gun tube is a relatively good approxi-
ination to an impulsive start. Of course, the actual time history of projec-
tile angular velocity in the gun tube could be used in the spin-up problem,
after suitable modification of the Wedemeyer imp lsive start model, but the
finite difference calcu'iation would require time steps which would be small
compared to the'acceleration timu, which is t,,pically 0.02 sec, and would
require a new calculation for each gun tube twist and for each zone charge.

6 Such an approach is less practical and nmare time consumming than using tihe
impulsive start approximation.

For an impulsive start, Wedemeyer's model 1 determines the "core flow,"
i.e., the flow exterior to the Ekman layers and a sidewall (Stewartson)
layer. Although the action of the endwalls, through the Ekinan ,ayers, is
essential t.o the spin-up process, only the solution to the core flow is

9



determined by the model. Us'iq order-of-magnitude arguments, Wedemeyer showed
that the Navier-Stokes equations reduce, for the core flow, to

Vt + U (Vr + V/r) = Re-1 [Vrr + (V/r) (2.1)

and

Uz *Vz =Pz = 0 (2.2)

plus

2
Pr =V/r and (rU)r + r Wz =

For Re ÷ lie proposed neglecting the diffusion terms in (2.1) so that

Vwt +U (V + Vw/r)=0 (2.3)
t r

where the subscript w denotes this approximation.

To solve (2.1) or (2.3), a relationship between U and V is necessary.
This is called the Ekman compatibility condition because the Ekman layer
suction must be made compatible with the core flow. A phenomenological
approach was necessary at this point in the theory. For laminar Ekman layers,
Wedemeyer proposed

U = -k (r - V)
(2.4)

kx K (a/c) Re-I/' = 2K/ts

with K = 0.443; K = 0.5 often gives results in better agreement with numerical
solutions to the Navier-Stokes and will usually be used here.

For turbulent Ekman layers

U = -kt (r - V)8 / 5

kt = 0.035 (a/c) Re- 1 / 5 W i/tst.

Using (2.4), (2.3) can be solved for V (r, t) with V (r, 0) = and V
(1, t) = 1:

2k t 2k t -k tVw = (rekt 1/r)/(ek£ -1) for r > e

-k t (2.6)
= 0 for r < e

10



-k 9t
Thus r rf = e separates rotating and nonrotating fluid and is called

the front. Using (2.5) in (2.3), a numerical integration is necessary but the
character of the solution is the same as when (2.4) is used. The solution
(pp. 8-16 of Reference 8) Is

ktt -- ( - y/ 5 dý (2.7)

where r

y = r Vw (y kept constant for the integration).

The solution is completed by obtaining U from or (25 a rom the
continuity equation. The solutions (2.6) and 2.7 have a shear discontinu-
ity, i.e., discontinuous Vwr, which would be smoothed out if the diffusion

terms were retained in (2.1).

It follows easily from (2.1) and (2.4) that

V F (r, k t, k, Re);

therefore k t= t/t for K = 0.5) is the natural time scale. For the

Iturbulent case k is replaced by kt,

In accordance with (2.2), V is independcit of z. To solve (2.1) for
V(r, t) initial and boundary conditions must be applied. For the present
problem these are:

V =0 for t:5 0, 0_< r _5 1 (2.8)

V 1 for r = I t > 0 (2.9)

V = 0 fir r = 0 t > 0. (2.10)

The analogy b',tween (2.1) and the heat conduction equation allows on, to
deduce that these are necessary and sufficient for determining a solution.
The form of (2.9) follows from the impulsive start condition. At r = 1, V

* would be a specified tunction of t for a nonimpulsive start. Conditions
(2.8) and (2.3) require a discontinuity in V at the point r = 1, t = 0.

8. Engineering Design Handbook, Liquid-Filled Projectile Design, AMC Pamphlet
"706-165, April 1969 (AD 8537).
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A finite difference scheme for so'ving (2.1) was presented in Referen(.

5. Yhe value of V (1,0) is required but since 0 < V (1,0) < 1 the value is

undetermined. If, for example, a value of V (1,0) = 0, 1/2, or 1 is used.
there will be a significant error in V; the error is largest near r = 1.
Because of the diffusive nature of (2.1), this error will decrease as t in-
creases. However, it was found that the error was often significant even
for t z ts. Obtaining a finite difference solution when a discontinuity in
boundary conditions exists can always be expected to require special treat-
ment. The approach adopted here and presented in Section IV is to obtain a
local solution which includes the effects of the discontinuity; that solution
is used to generate a new initial condition. 3efore doing that we digress to
consider the manner in which the discontinuity is treated for the non-
diffusive equation.

III. THE NONDIFFUSIVE EQUATION

The approximation of (2.1) by (2.3) is clearly a singular perturbation
since the second order equation is reduced to a first order equation. The
boundary conditions (2.8) and (2.9) are applied to (2.3); (2.10) cannot be
imposed but the solution (2.6) sati sfies it. The discontinuity can be
accommodated in solving (2.3), as will be shown.

It is convenient to introduce the circulation, r = r Vw, and the time
scale

t' = k 9 t.

Only the laminar case will be considered here. Then (2.3) becomes, using
(2.4),

rt. (r - r/r) r 0. (3.1)

This first order equation has a one-parameter family of characteristics and
can be solved by the standard method of characteristics. These characteris-
tics contain some information related to the properties of the solution of tne
original, diffusive equation, (2.1), and they are called the sub-characteris-
tics of tae original equation. 9  A ong a characteristic of (3.1) r =ro
constant, 0 < r < 1, and the equation of the characteristics is

-0-

r2 = r + (y2 
- ro) e- 2 t. (3.2)

where y is a constant, 0 < y < 1. This equation can be written in two parts:

9. J. D. Cole, Perturbation Methods in Applied Mathematics, Blaisdell
Publishing Company, Waltham, MA, 1968.

12
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-t'

= e ro =0 (3.3)

which curves issue from t' = 0, 0 < r < 1 and

r" =r° +(1 - ro) e 2 t y (3.4)
00

which curves emanate from the point r = 1, t' = 0 where the discontinuity
exists. The characteristic common to (3.3) and (3.4) is the front

r = rf = et.

Some examples of the characteristics are shown in Figure 2. For the charac-

teristics to the left of the front, (3.3), r + 0 as t' +- ÷whereas, for those

to the right, (3.4), r + £ 1/ 2 as t' + -. Some discussion of the method of

characteristics was given by Wedemeyer 8 and Weidman.'°

The set of characteristics, (3.4), that originates at the point r = 1,
"t' = 0 is called a fan. A more familiar example of a fan occurs in supersonic

flow over a corner, the Prandtl-Meyer expansion. All the given data,

0 < <_ 1, at the discontinuity is convected into t' > 0 along the fan. The

initial condition ro = 0 is convected along (3.3).

Using the method of characteristics provides some insight into the
solution of (2.3) and, in particular, how the discontinuity is accommodated.
Of course, all the information is contained in (2.6). It could be used to
obtain an initial condition for (2.1) to treat the discontinuity. (See Section
V.) It would be better than assuming a value for V(1,0) but considerably less
accurate than the method discussed next.

,4.

IV. THE SOLUTION FOR SMALL TIME

Introducing (2.4) and the time scale t' =k £t into (2.1) gives

Vt, + (V - r) (Vr + V/r) = E Vrr + (V/r)r] (4.1)

10. P. D. Weidman, "On the Spin-Up and Spin-Down of a Rotating Fluid: Part
1. Extending the Wedeme"- Model," Journal of Fluid Mechanics, Vol. 77,
Pazt 4, 1976, pp. 685-7?d.

13
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where E = 1/k Re. The boundary and iritial conditions are still (2.8)-

(2.10). The laminar Ekman layer case will be treated in detail; the results
for the turbulent case are merely indicated.

The domain of integration for (4.1) is shown in Figure 3a together with
the boundary and initial conditions; the discontinuity is at point P:
r = 1, t = U. A solution is sought which satisfies (4.1), (2.8), and (2.9) in
the neighborhood of P. The approach is to stretch the neighborhood of P, by
means of a singular transformation, so that the behavior of V can be
examined. The coo-dinates (r, t') are transformed to (R, T):

R = (1 - r)/2 (c t') 1 / 2
(4.2)

T =t'

This definition of R is 1/2 £1/2 that of the R in Reference 5. The domain of
integration in the transformed plane is shown in Figure 3b with the trans-
formed boundaries of the (r, t') region indicated. The point P transforms
into the positive R axis, the initial line t' = 0 transforms to the point at
infinity, and r = 0 transforms into a hyperbola-like curve.

Equation (4.1) is transformed to (R, T) and a solution near T = 0 is
sought. The form of the equation suggests the expansion

V = V0 (R) + T1 / 2 V1 (R) + ... (4.3)

where Vo and V1 satisfy

Vo + 2 R Vo= 0 (4.4)

V' + 2 R V1 -2 V= Vo2 [C1/2+ E112 (1 -Vo)] (4.5)

with ' = d/dR. The series (4.3) is a singular perturbation as evidenced by

the fact that the partial differential equation has been replaced by ordinary
differential equations and, as will be shown, the boundary condition at r = 0
cannot be satisfied. In the terminology of Van Dyke 11 (4.3) is a direct
coordinate expansion. Such expansions are usually nonuniform, e.g., diverging
for large T which is true for (4.3). For T small enough the two-term series
(4.3) gives an adequate approximation to V.

The boundary conditions for V0 are obtained from (2.8) and (2.9):

Vo (0) = 1 Vo () =0.

11. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press, New
York, NY, 1964.

14
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The solution to (4.4) is

Vo erfc R. (4.6)

For r 1, this is the same as the solution for the impulsively started,
"infinite plate (the Rayleigh problem) which is to be expected since curvature
effects are negligible for r - 1. The boundary conditions for V, are

V1 (0) = V ) = 0

and the solution to (4.5) is then

SVl 1 / 2  R (1 - erf R) + e-1/2 [R (1 - erf 2R) - -I/2 e-R erf R]. (4.7)

The one-term solution, V = Vo = erfc R has the property that V = constant
along the parabolas in the (r, t) plane, R = constant. This is somewhat
analogous to the property of the nondiffusive equation that r = constant
"along the fan (3.4).

The original objective was to obtain a solution to (4.1) in the
neighborhood of P but (4.3), (4.6), and (4.7) predict V for all P. For

- r O, r R /2 ( T)/2
r = 0, or R ,1/2 (e T) it is clear that neither V0 nor V1 is zero so that

0 1'

(2.10) is not satisfied. In principle a solution near r = 0 should be
obtained and matched to (4.3). In practice, for application to the finite
difference problem this is not necessary, ds shown in the next section.

.. Plots of V1 for three values of c and V are presented in Figure 4. Both
Vo and V1 decrease exponentially as R + w. Their asymptotic forms are

• -1/2 R2R2

V• (1//ri) (Ci/ + C-1/2) e • (4.9)

For estimation purposes (4.8) is in error by 1 in the second decimal place for
R = 1.34 and by 1 in the sixth decimal place for R = 3.12; for a moderately
small c = .0313, corresponding to Re = 4 x 10 and c/a = 3.120, (4.9) is in
error by 1 in the first decimal place for R =1.34 and by 11 in the fifth
decimal place for R = 3.12.
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V. APPLICATION OF THE _JLUTION FOR SMALL TIME

If the initial condition (2.8) is applied at t = O the difficulties
disc;ussed in Section II arise. The limit of (4.3) as t or t + 0 is (2.8).
Therefore, we must apply (4.3) at a small time, the natural choice being on-
time step, At, in the finite differenc.e method. Although we shall make that
choice, the method is not restricted to it.

Either the one-term or two-term solutions in (4.3) can be used. We set

V = Vo (R) (5.1)

or

V = Vo (R) + T1/ 2 V1 (R) (5.2)

at t =At or T =k At. Expressing R in terms oi the original variables gives

R= (1 - r) (Re/At)l/ 2 /2.

The functions of r computed from either (5.1) or (5.2) provide the initial
conditions at t = At. The fact that V * 0 at r = 0 is of no practical
concern. Only an approximate initial condition can be expected and the

approximation at r = 0 is quite good. For example, if R > 3.5, V < 10'6 if
(5.1) is used; for a range of At and c the same is true if (5.2) is used. For
r = 0 this condition on R is

(Re/At) 1/ 2 > 7. (5.3)

For At = 1, the lower bound on Re is 49. For smaller Re, At must be
decreased.

There is an indepene t test of the permissible At in the iterative
finite difference calculation. The At is required to be small enough so that
no more than 4 iterations are required for convergence at any time step.
Experience has shown that if the t from the criterion is satisfied, (5.3) is
also. The requirement on Ar for the finite difference calculation is based
mainly on experience and/or tests; see Reference 5 for a discussion of this.
There is obviously an interaction between the Ar error in the finite diff-
erence scheme and the accuracy of the initial condition. For small enough
At, (5.2) is more accurate than (5.1), and using it gives a more accurate V
for a given Ar; alternatively, for a given accuracy, a larger Ar
can be used with (5.2).

The accuracy of the two-term solution, for small t, can be illustrated by
comparing it with the finite difference solution of (2.1) using (2.4); a
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criterion for small t is given in the next paragraph. For Case 1, with Re =

4 X 104, c/a = 3.120, and e = .0313, the solution V (r, t) is shown in Fig.
5 for .84 < r < 1.0 at t - 40 with initial condition (5.2) at t = At = 5.

The solutions Vo and Vo + TI/2 V, at t = 40 are plotted and show that the two-
term approximation is still accurate at t = 40. The nondiffusive solution,
(2.6), is also plotted to illustate the remark at the end of Section III.

In the discussion after (4.3) the likelihood that it would diverge for
increasing T was mentioned. This is illustrated in Figure 6. The finite
difference result for V, using (5.2) at At = 5, is shown vs t for Case 1,

r = .94 and Case 2, r = .995. Case 2 parameters are Re = 4 x 105, c/a = 1,
and e = .00316. The one-term and two-term solutions are also shown. For Case

1, Vo + TI/ 2 V1 is a good approximation to V but is beginning to diverge from

it. For Case 2, the divergence is quite evident and in fact V. + TI/ 2 V I> 1

for t > 42. Since V > 1 is impossible, the two-term solution is not valid
near t-= 42. An approximate expression for the time of breakdown can be
obtained from the condition Vr (r = 1) = 0. Using the two-term approximation

for V this gives

(V0 + T1 "2 V1)rlr = 1 =

Using (4.6) and (4.7) this yields

T11 2 [£112 + 1 1/2 (1 - 2/w)] = 211-1/2

or, for £ small,

T T 10 (5.4)

as the approximate time of breakdown. For Case 1 in Figurn 6, this gives
t = 400 and for Case 2 t = 40. If the solution is valid up to a time which is
some fraction, C, o! T in (5.4)

t 1& (10 C/K2 ) (c/a) 2

as a practical upper-limit for the validity of the two-term approximation.
For the cases considered C = 0.5 is suitable.

The crucial tests of the application of (5.1) or (5.2) is the accuracy of
the finite difference solution for times comparable to ts. Results will be

"17
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shown for Case 3 with Re = 4974, c/a = 3.30, c = .1056, and Ki .443 giving

= 525. The comparison will be given first in terms of the vorticity c =
(r V)r/ 2 r. This is an important quantity because it occurs, along with V,

the perturbation equations. For comparison purposes, it has the advantage
that an exact result is known: {r (r = 1) = 0 fcr all t. This follows

directly from (4.1). Irn Figure 7 ; vs r is shown for Case 3 at t = 100 and
600; ; is obtained from the finite difference solution using (5.1) as initial
condition at a = 5 and using V (1,0) = 1. For t = 100 the errors resulting
from use of V (1,0) = 1 are quite large; for t = 600 the errors are smaller
but would be unacceptable in the solution of the eigenv3lue problem. For t =
100, r (r = 1) = -240 for the V (1,0) = 1 curve; ýr' (r = 1) = -1.5 for the

curve using (5.1). The results using (5.2) are not shown in Figure 7
but Cr (r = 1) = 0.32 is obtained.

For t = 100, the assumption V (1,0) = I causes errors in V of the order
of 10%; whereas, for t = 600 the errors are about 3%. Experience has shown
that errors of 3 - 4% in V give erroneous results for the eigenvalue.

VI. THE TURBULENT CASE

The same kind of approach can be used to derive the initial condition for
the turbulent case. In fact the one-term solution is the same as for the
laminar case, (5.1). Only the essential steps will be given here. F.')r the
turbulent case, (2.1) with (2.5) must be solved for V with the same boundary
conditions (2.8) - (2.10). Analogous to (4.1), V satisfies

Vt- (r - V)8 / 5 (Vr + V/r) =t [Vrr + (V/r)r] (6.1)

where now t' = ktt and ct = 1/kt Re. Again the transformation (4.2) and the

expansion (4.3) are used. The equation for Vo and its solution are the same

as (4.4) and (4.6), respectively. The equation for V1 is now

1/2 11 8/512R V 2 V,= 2 Voe/ +e (I - Vo)] (6.2)

With Vo = erfc R it is unlikely that a closed form solution to (6.2) can be

obtained as was done for the laminar case; the homogeneous solution of (6.2)
is the same as before. A numerical integration of (6.2) is certeinly feasible
but has not been incorporated into the initial condition. For the turbulent
case only the one-tern-, solution, Vo, has been used.

18
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VII. CONCLUSIONS

For an impulsive start, the boundary conditions for the spin-up equation
prescribe a discontinuity in the velocity on the boundary. If this discon-
tinuity is not treated properly, the finite difference solution of the spin-up
equation will be in error. Although the errors continually decrease (because
the spin-up equation is of the diffusion type) they may be significant even
for one spin-up time. The treatment of the discontinuity proposed here con-
sists of determining a local solution near the discontinuity and using that as
an approximate initial condition. The degree of approximation has been in-
vestigated and limits of applicability determined. Tests of this approximate
initial condition, over a range of Re and c/a, have shown th3t the errors in
the solution are negligible at about one-half of the spin-up time; the time
for negligible errors can be decreased by adjusting the parameters of the
initial solution.
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t' T • 2 (•T)I/2 R = 1

r=1 r:O
t'•O t>OV=O V=I V=OV=1

_ _ _ _R R=,r r -

.0 VV0 1.0

r t' =0 tr'

V =0

(a) (b)
Figure 3. Domain of Integration and Boundary Conditions for

(4.1) in (a) the (r, t) Plane and (b) the Trans-
formed (R, T) Plane; See (4.2).

-=.01 V---------V

V1

V

1.-0

0.0 0.s 1.0 1.5 2.0 2.5 3.0

R

Figure 4. V1 vs R for Three Values of c and V

See (4.6) and (4.7).
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1.0 /~v°
V0

0.8 Finite Diff., using (5.2)

,Vo+(T 1/ 2 ) Vl

0.6 // Nondiffusive Vv /1

0.4 /
I I

0.2/ /

0.0 -t- -r --

.84 .88 .92 .96 1.00
r

Figure 5. Comparison of the Finite Difference Solution for V at
t = 40 With the One-Tem and Two-Term Solutions, (5.1)
and (5.2), and the Nondiffusive Solution (2.6).
Re = 4 x 104 , c/a = 3.120, e = 0.0313.

1.2

1.0 -- "Case 2

,, r=.995
1J8 Finite Difference V with

(5.2) at At = 5.0
.6 / I - - +T 1 2 V1V // -I•CaeIV

.4 • • -- r = .9 4 0 V
.4 0

.2

0 20 40 60 80 100

t
Figure 6. Finite Difference Solution V vs t for Cases 1 and 2 Com-

pared With the One-Term and Two-Tem Approximate Solutions.
Case 1: Re = 4 x 104, c/a = 3.120;
Case 2; Re 4 x 105, c/a = 1.
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1.0 t=600 . -

Using (5.1)

0.5 .-----.--Assuming V(1,0) = 1
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r

Figure 7. Vorticity r, vs r for Re = 4974, c/a = 3.30,
0.1056 at t = 100 and 600 Assuming

V(1,0) 1 or Using (5.1) at At = 5.
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LIST OF SYMBOLS

a cross-sectional radius of cylinder

c half-height of cylinder

k- (a/c) Re"- 2 (See (2.4).)

kt 0.035 (a/c) Re- 1 / 5 (See (2.5).)

N number of subintervals in r in finite-differ•..ice solution

P pressure/(pa2 92 ) in Wedemeyer model (See (2.2).)

1 r radial coordinate/a

rf location if front in Wedemeyer nondiffusive m'del

R (1 - r)/(4•t

Re -a 2 a/v, Reynolds number

t time x R

tst Est R

.to -k t (or ktt)

is -(2 c/a) Rel/ 2 /a, characteristic spin-tip time for I..minar
Ekman layer

tst (28.6 c/a) Re1 5 /Q, Lnaracteristic spin-up time for
turbulent Ekman layer

T = t' (see (4.2))

J, V, W rad,.l, azimuthal, axial velocity conmponents x I/ ai) of
.4 Wedemeyer model spin-up flow with diffulsion (See (2.1) and
L< (2.2).)

Uw, Vw radial and ainmuthal velocity components x 1/(aR) of
Wedemeyer model spin-up flow without diffusion (See (?.3).
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Vo(R), VI(R) zeroth and first order coef1icients of T1 / 2 in (4.3)

z axial coordinate (z = 0 at cylinder midplane.)

y constant in characteristic equation, (3.2)

r rVw, circulation

constant in characteristic equation, (3.2)

At t-•aterval size in finite difference solution

S1/Q(k XRe)

Ct 1/(kt Re)

(rV)r/(2r), nondimensional vorticity

0 azimuthal angle

constant in expression for radial velocity with laminar

Ekman layer (See (2.8).)

kinematic viscosity of fluid

p density of fluid

angular velocity of spinning cylinder
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to your needs, more usable, improve readability, etc.)______

6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.

Name:___________________

Telephone Number:_____________________

Organization Address: ______________________
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